Modularity, standardization, and flexibility in space technology have increased significantly in recent years. Coupled with novel processes and digital approaches, the possibilities are almost limitless. How about replacing payloads for space missions shortly before launch? Or booking a satellite bus as easy as booking freight capacity in airplanes? This is exactly what the newly formed consortium with RWTH Aachen UniversityGerman Orbital Systems and HOSTmi wants to realize.

The innovation

The joint project “Structure and lightweight construction optimized standard payload module and satellite bus connection for the transfer of technology demonstrations into space and industry 4.0 compliant processes – SLOTD4.0” is funded by the German Federal Ministry for Economic Affairs and Energy and administrated by the German Aerospace Center (DLR) Space Administration. The main objectives of SLOTD4.0 are the introduction of modular end-to-end processes, the acceleration of development and production, the shortening of delivery times, the simplifying of ordering procedures, and the standardization of interfaces and engineering activities. Within this project, a 16U CubeSat, consisting of an 8U satellite-bus-block and an 8U payload-block will be developed by RWTH Aachen University and German Orbital Systems. The blocks are equipped with an intelligent Space System Interface (iSSI), heritage of the former iBOSS project, a standardized multifunctional coupling device transferring mechanical loads, electrical power, and data. The patented iSSI interface allows coupling and decoupling individual payload-blocks, developed by RWTH Aachen University, to a standardized satellite bus, developed by the project partner German Orbital Systems. The functional separation of satellite-bus and payload, enabled by the defined standards of the interface, allows an independent AIT of bus and payload. This leads to increased mission and commercial flexibility regarding late loading issues or payload replacement needs.

Industry 4.0 and digitalization

In addition, based on Industry4.0 technologies and processes in combination with innovation strategies, HOSTmi will develop a service architecture with different procedures to map the product life cycle phases of the modular satellite bus from ordering and acquisition to manufacturing and operation. Focus here is on the „Customer Journey“, plotting the phases of payload requirements management to AIT. Such an environment supports central administration of all user and mission relevant information, and processes all technical specifications and requirements in an automated, simple and standardized manner. 

The primary structure must be lightweight, integration friendly regarding working space, offer predefined mounting points for a wide variety of components, solutions for harness issues and in order to meet current and future economic demands be optimized for large-scale production endeavors. This approach will open up new use cases beyond SLOTD4.0, such as in-orbit interchange of payloads or distributed apertures and sensors which underline the potentials of the technology. In addition, advanced algorithms could automatically determine the compatibility of different payloads with characteristics of hosting satellite buses, or identify missing or incompatible properties for payload customers, and, thereby generating feasibility awareness at an early stage.

SLOTD4.0 is funded by the Space Administration of the German Aerospace Center (DLR) with grants from the Federal Ministry of Economics and Energy (BMWi) based on a resolution of the German Bundestag. Funding reference numbers: 50RA2000, 50RA2003, 50RA2004